Moving Average Models for Volatility and Correlation, and Covariance Matrices
نویسنده
چکیده
The volatilities and correlations of the returns on a set of assets, risk factors or interest rates are summarized in a covariance matrix. This matrix lies at the heart of risk and return analysis. It contains all the information necessary to estimate the volatility of a portfolio, to simulate correlated values for its risk factors, to diversify investments and to obtain efficient portfolios that have the optimal trade-off between risk and return. Both risk managers and asset managers require covariance matrices that may include very many assets or risk factors. For instance, in a global risk management system of a large international bank all the major yield curves, equity indices, foreign exchange rates and commodity prices will be encompassed in one very large dimensional covariance matrix.
منابع مشابه
Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملDEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND A One Line Derivation of DCC: Application of a Vector Random Coefficient Moving Average Process
One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties of the QMLE of the DCC...
متن کاملA Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index
Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...
متن کاملPortfolio Single Index (PSI) Multivariate Volatility Models
The paper introduces the structure of parsimonious Portfolio Single Index (PSI) multivariate conditional and stochastic constant correlation volatility models, and methods for estimation of the underlying parameters. These multivariate estimates of volatility can be used for more accurate portfolio and risk management, to enable efficient forecasting of Value-at-Risk (VaR) thresholds, and to de...
متن کاملIs the correlation in international equity returns constant : 1960 - 1990 ?
We study the correlation of monthly excess returns for seven major countries over the period 1960-90. We find that the international covariance and correlation matrices are unstable over time. A multivariate GARCH(1,1) model with constant conditional correlation helps to capture some of the evolution in the conditional covariance structure. However tests of specific deviations lead to a rejecti...
متن کامل